Creating Functions
Overview
Teaching: 45 min
Exercises: 20 minQuestions
How can I teach MATLAB how to do new things?
Objectives
Compare and contrast MATLAB function files with MATLAB scripts.
Define a function that takes arguments.
Test a function.
Recognize why we should divide programs into small, single-purpose functions.
If we only had one data set to analyze, it would probably be faster to load the file into a spreadsheet and use that to plot some simple statistics. But we have twelve files to check, and may have more in future. In this lesson, we’ll learn how to write a function so that we can repeat several operations with a single command.
Let’s start by defining a function fahr_to_kelvin
that converts temperatures from Fahrenheit to Kelvin:
function ktemp = fahr_to_kelvin(ftemp)
%FAHR_TO_KELVIN Convert Fahrenheit to Kelvin
ktemp = ((ftemp - 32) * (5/9)) + 273.15;
end
A MATLAB function must be saved in a text file with a .m
extension.
The name of that file must be the same as the function defined
inside it. The name must start with a letter and cannot contain spaces.
So, you will need to save the above code in a file called
fahr_to_kelvin.m
.
Remember to save your m-files in the current directory.
The first line of our function is called the function definition,
and it declares that we’re writing a function named fahr_to_kelvin
,
that has a single input parameter,ftemp
,
and a single output parameter, ktemp
.
Anything following the function definition line is called the body of the
function. The keyword end
marks the end of the function body, and the
function won’t know about any code after end
.
A function can have multiple input and output parameters if required, but isn’t required to have any of either. The general form of a function is shown in the pseudo-code below:
function [out1, out2] = function_name(in1, in2)
%FUNCTION_NAME Function description
% This section below is called the body of the function
out1 = something calculated;
out2 = something else;
end
Just as we saw with scripts, functions must be visible to MATLAB, i.e., a file containing a function has to be placed in a directory that MATLAB knows about. The most convenient of those directories is the current working directory.
GNU Octave
In common with MATLAB, Octave searches the current working directory and the path for functions called from the command line.
We can call our function from the command line like any other MATLAB function:
>> fahr_to_kelvin(32)
ans = 273.15
When we pass a value, like 32
, to the function, the value is assigned
to the variable ftemp
so that it can be used inside the function. If we
want to return a value from the function, we must assign that value to a
variable named ktemp
—in the first line of our function, we promised
that the output of our function would be named ktemp
.
Outside of the function, the variables ftemp
and ktemp
aren’t visible;
they are only used by the function body to refer to the input and
output values.
This is one of the major differences between scripts and functions: a script can be thought of as automating the command line, with full access to all variables in the base workspace, whereas a function can only read and write variables from the calling workspace if they are passed as arguments — i.e. a function has its own separate workspace.
Now that we’ve seen how to convert Fahrenheit to Kelvin, it’s easy to convert Kelvin to Celsius.
function ctemp = kelvin_to_celsius(ktemp)
%KELVIN_TO_CELSIUS Convert from Kelvin to Celcius
ctemp = ktemp - 273.15;
end
Again, we can call this function like any other:
>> kelvin_to_celsius(0.0)
ans = -273.15
What about converting Fahrenheit to Celsius? We could write out the formula, but we don’t need to. Instead, we can compose the two functions we have already created:
function ctemp = fahr_to_celsius(ftemp)
%FAHR_TO_CELSIUS Convert Fahrenheit to Celcius
ktemp = fahr_to_kelvin(ftemp);
ctemp = kelvin_to_celsius(ktemp);
end
Calling this function,
>> fahr_to_celsius(32.0)
we get, as expected:
ans = 0
This is our first taste of how larger programs are built: we define basic operations, then combine them in ever-larger chunks to get the effect we want. Real-life functions will usually be larger than the ones shown here—typically half a dozen to a few dozen lines—but they shouldn’t ever be much longer than that, or the next person who reads it won’t be able to understand what’s going on.
Concatenating in a Function
In MATLAB, we concatenate strings by putting them into an array or using the
strcat
function:>> disp(['abra', 'cad', 'abra'])
abracadabra
>> disp(strcat('a', 'b'))
ab
Write a function called
fence
that has two parameters,original
andwrapper
and addswrapper
before and afteroriginal
:>> disp(fence('name', '*'))
*name*
Solution
function wrapped = fence(original, wrapper) %FENCE Return original string, with wrapper prepended and appended wrapped = strcat(wrapper, original, wrapper); end
Getting the Outside
If the variable
s
refers to a string, thens(1)
is the string’s first character ands(end)
is its last. Write a function calledouter
that returns a string made up of just the first and last characters of its input:>> disp(outer('helium'))
hm
Solution
function ends = outer(s) %OUTER Return first and last characters from a string ends = strcat(s(1), s(end)); end
Variables Inside and Outside Functions
Consider our function
fahr_to_kelvin
from earlier in the episode:function ktemp = fahr_to_kelvin(ftemp) %FAHR_TO_KELVIN Convert Fahrenheit to Kelvin ktemp = ((ftemp-32)*(5.0/9.0)) + 273.15; end
What does the following code display when run — and why?
ftemp = 0 ktemp = 0 disp(fahr_to_kelvin(8)) disp(fahr_to_kelvin(41)) disp(fahr_to_kelvin(32)) disp(ktemp)
Solution
259.8167 278.1500 273.1500 0
ktemp
is 0 because the functionfahr_to_kelvin
has no knowledge of the variablektemp
which exists outside of the function.
Once we start putting things in functions so that we can re-use them, we need to start testing that those functions are working correctly. To see how to do this, let’s write a function to center a dataset around a particular value:
function out = center(data, desired)
out = (data - mean(data(:))) + desired;
end
We could test this on our actual data, but since we don’t know what the values ought to be, it will be hard to tell if the result was correct, Instead, let’s create a matrix of 0’s, and then center that around 3:
>> z = zeros(2,2);
>> center(z, 3)
ans =
3 3
3 3
That looks right, so let’s try out center
function on our real data:
>> data = csvread('data/inflammation-01.csv');
>> centered = center(data(:), 0)
It’s hard to tell from the default output whether the result is correct–this is often the case when working with fairly large arrays–but, there are a few simple tests that will reassure us.
Let’s calculate some simple statistics:
>> disp([min(data(:)), mean(data(:)), max(data(:))])
0.00000 6.14875 20.00000
And let’s do the same after applying our center
function
to the data:
>> disp([min(centered(:)), mean(centered(:)), max(centered(:))])
-6.1487 -0.0000 13.8513
That seems almost right: the original mean was about 6.1, so the lower bound from zero is now about -6.1. The mean of the centered data isn’t quite zero–we’ll explore why not in the challenges–but it’s pretty close. We can even go further and check that the standard deviation hasn’t changed:
>> std(data(:)) - std(centered(:))
5.3291e-15
The difference is very small. It’s still possible that our function is wrong, but it seems unlikely enough that we should probably get back to doing our analysis. We have one more task first, though: we should write some documentation for our function to remind ourselves later what it’s for and how to use it.
function out = center(data, desired)
%CENTER Center data around a desired value.
%
% center(DATA, DESIRED)
%
% Returns a new array containing the values in
% DATA centered around the value.
out = (data - mean(data(:))) + desired;
end
Comment lines immediately below the function definition line
are called “help text”. Typing help function_name
brings
up the help text for that function:
>> help center
Center Center data around a desired value.
center(DATA, DESIRED)
Returns a new array containing the values in
DATA centered around the value.
Testing a Function
Write a function called
normalise
that takes an array as input and returns an array of the same shape with its values scaled to lie in the range 0.0 to 1.0. (If L and H are the lowest and highest values in the input array, respectively, then the function should map a value v to (v - L)/(H - L).) Be sure to give the function a comment block explaining its use.Run
help linspace
to see how to uselinspace
to generate regularly-spaced values. Use arrays like this to test yournormalise
function.Solution
function out = normalise(in) %NORMALISE Return original array, normalised so that the % new values lie in the range 0 to 1. H = max(max(in)); L = min(min(in)); out = (in-L)/(H-L); end
a = linspace(1, 10); % Create evenly-spaced vector norm_a = normalise(a); % Normalise vector plot(a, norm_a) % Visually check normalisation
Convert a script into a function
Convert the script from the previous episode into a function called
analyze_dataset
. The function should operate on a single data file, and should have two parameters:file_name
andplot_switch
. When called, the function should create the three graphs produced in the previous lesson. Whether they are displayed or saved to theresults
directory should be controlled by the value ofplot_switch
i.e.analyze_dataset('data/inflammation-01.csv', 0)
should display the corresponding graphs for the first data set;analyze_dataset('data/inflammation-02.csv', 1)
should save the figures for the second dataset to theresults
directory.Be sure to give your function help text.
Solution
function analyze_dataset(file_name, plot_switch) %ANALYZE_DATASET Perform analysis for named data file. % Create figures to show average, max and min inflammation. % Display plots in GUI using plot_switch = 0, % or save to disk using plot_switch = 1. % % Example: % analyze_dataset('data/inflammation-01.csv', 0) % Generate string for image name: img_name = replace(file_name, '.csv', '.png'); img_name = replace(img_name, 'data', 'results'); patient_data = csvread(file_name); if plot_switch == 1 figure('visible', 'off') else figure('visible', 'on') end subplot(2, 2, 1) plot(mean(patient_data, 1)) ylabel('average') subplot(2, 2, 2) plot(max(patient_data, [], 1)) ylabel('max') subplot(2, 2, 3) plot(min(patient_data, [], 1)) ylabel('min') if plot_switch == 1 print(img_name, '-dpng') close() end end
Automate the analysis for all files
Write a script called
process_all
which loops over all of the data files, and calls the functionanalyze_dataset
for each file in turn. Your script should save the image files to the ‘results’ directory rather than displaying the figures in the MATLAB GUI.Solution
%PROCESS_ALL Analyse all inflammation datasets % Create figures to show average, max and min inflammation. % Save figures to 'results' directory. files = dir('data/inflammation-*.csv'); for i = 1:length(files) file_name = files(i).name; file_name = fullfile('data', file_name); % Process each data set, saving figures to disk. analyze_dataset(file_name, 1); end
We have now solved our original problem: we can analyze any number of data files with a single command. More importantly, we have met two of the most important ideas in programming:
-
Use arrays to store related values, and loops to repeat operations on them.
-
Use functions to make code easier to re-use and easier to understand.
Key Points
Break programs up into short, single-purpose functions with meaningful names.
Define functions using the
function
keyword.